
Extensive-Form Games
An Extensive-Form Game consist of the following 
elements:

A set of players N
A set of histories H (all possible sequences of moves)
A player function P, which assigns a player (decision-
maker) to every history
A payoff function, which assigns payoffs for each 
player to every terminal node

It differs from a Normal-Form Game
It is dynamic (players move in some order)
Players may observe histories (what happened so far 
in the game)
Every time a player makes a move, that move can be 
conditioned on the history



Game Trees

A game tree is a graph that represents an 
extensive-form game, like a game matrix for 
normal-form games
In practice, this representation is used only 
for relatively simple games
Game Trees consist of:

Nodes (Decision Nodes, Terminal Nodes), that 
represent histories
Branches (Arcs), that represent the possible 
decisions (moves, actions) at a decision node



Game Trees - Examples
Biased matching pennies

Player 1

(1,-1)

Player 2

H T

T

(-1, 1) (1, -1)

Player 2

(-1, 1)

T HH



Game Trees - Examples
A 3-player game

Player 1

Player 2

L1 R1

R2

(2, -1, 4)

L2

(2, -2, 2) (0, 0, 3)

Player 3

R3L3

(1, -1, -1)



Game Trees - Examples
Ultimatum game

Player1

Player2

‘1’
‘3’

R

(0, 0)

L

‘0’

R

(1,3) (0,0)

Player 2

A
R

(0,4) (0,0)

Player 2

A
R

(2,2) (0,0)

Player 2

A

‘2’

(3, 1)

A

‘4’

A

R

(4, 0)

(0, 0)
Player2



Strategies in ext.-form games

In extensive-form games, a (pure) strategy is 
a complete game plan, i.e. it assigns a (pure) 
decision to every possible decision node
In the 3-player game, each player has only 
two pure strategies
In the biased matching pennies, player 1 has 
2 strategies, player 2 has 4
In the ultimatum game, player 1 has 5, player 
2 has 32 strategies



Reducing to Normal Form

The following game reduces to...
Player 1

(2, 1)

Player 2

U D

R

(0, 0) (3, 2)

Player 2

(-1, 1)

R LL



Reducing to Normal Form

Something like this:

Player 2

Player 
1

LL LR RL RR

U 2, 1 2, 1 0, 0 0, 0

D -1, 1 3, 2 -1, 1 3, 2



Subgame Perfect Nash 
Equilibrium (SPNE)

A subgame of an extensive-form game (with perfect 
information) is a game which begins at any non-
terminal history and contains all nodes (histories) and 
possible moves that can follow after that history.
A subgame-perfect Nash Equilibrium (SPNE) is pair 
of strategies (pure or mixed) which forms a NE in 
every subgame. SPNE is a refinement of NE.
The optimal algorithm of identifying SPNE is 
backward induction. You start from finding best-
responses in the smallest (final) subgames and then 
consider ever bigger subgames, fixing the best-
responses which have been identified in smaller 
subgames. Problem: cannot be used in infinite-
horizon games.



Finding SPNE

In the last example, only (D,LR) is a 
SPNE, even though there are 3 NE
In the 3-player game (L1, R2, R3) is a 
SPNE, but (R1,L2,L3) is a NE that is not 
subgame perfect
In the biased matching pennies game, 
in all SPNEs player 2 plays TH (player 1 
is indifferent between T and H)



The drawbacks of SPNE

Find the SPNE of the Centipede Game

SPNE={SS..S,SS..S}

(1, -1)

Pl. 1

(0, 2)

Pl. 2

(3, 1)

Pl. 1

(2, 4)

Pl. 2

(96,98)

Pl. 2

(98, 100)

Pl. 2

(99,97)

Pl. 1 (99, 99)

S S S S S S S

C C C C C C C


